

SOILS: Understanding and Improving Soil

Outline: Possible Topics

Understanding Soils

Basic Overview of Soil Types

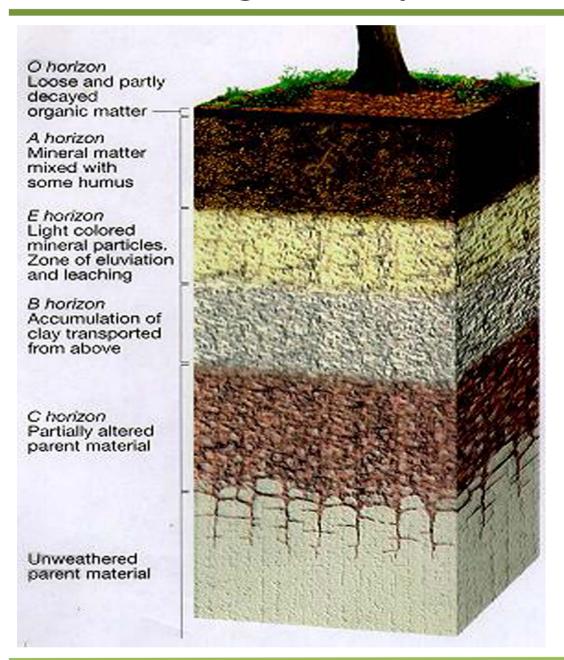
Ideal Soil Components and Characteristics (Drainage)

Soil Test and pH – How, Where, and Interpreting (what deficiencies may mean to plants)

Improving Soils

Building Available Nutrients – soil biology and compost

Drainage – Tilling Techniques and Raised Bed Gardens


Techniques for Your Garden

Raised Bed Gardens, Hugelkultur, Straw Bale Gardens

Additional Resources

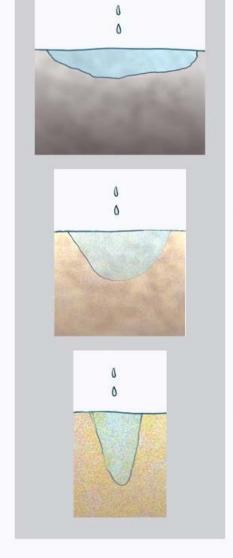
Understanding Soil Composition

This is a cross-section of Earth. For our purposes, we are focusing on the top layer – topsoil.

In this layer we are concerned with:

- -Drainage characteristics
- Organic material (humus)
- Biological activity
- Proportion of air, water, and carbon

FRESH
FORK
MARKET
LOCAL PROVISIONS FOR
MODERN DOMESTIC LIVING


There are 3 Basic Components

Three types of soil texture

- Clay soil has very fine particles, holds moisture a long time, and may not admit air into the root zone.
 - Remedy: add organic matter or gypsum to cause the clay particles to clump together.
- Loam soil is a mix of clay, silt and sand particles. These soils are generally considered ideal for plant growth.
- Sandy soils have coarse particles, drain rapidly and dry quickly.

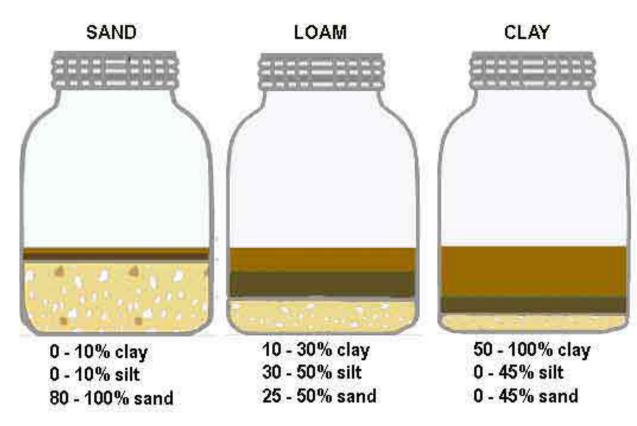
Remedy: add organic matter. It will act as a sponge to keep the water in the root zone longer.

Clay

- Clay particles are very small, invisible to the naked eye.
- Water penetrates clay soils slowly - but it does spread
- Retains water well, but compacts easily.

Silt

- Silt is intermediate between clay and sand.
- This is generally a good soil for plant growth.


Sand

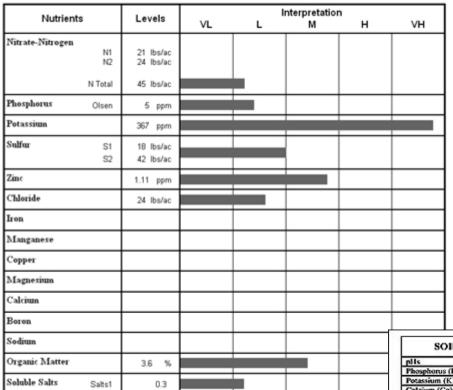
- Sand particles are coarse, visible to the naked eye.
- Water penetrates quickly, and does not remain in the soil.

Here is How to Test Your Soil

JAR TESTING FOR SOIL TYPE

Step 1: In a mason jar, put a few small shovels of soil from the middle of your garden. Dig down to the root-zone to get the representative sample.

Step 2: Add a few drops of dish soap and fill the jar with cold water.


Step 3: Shake vigorously. Allow several days for all components to settle.

Sand is the heaviest and will settle first. Second will be silt and third will be clay.

Also, consider a laboratory soil test

Good	Vati	ire		Av	eni, Virginia	
		S	oil Test	Results		
Sample Location: Wi	HOLE YARD	LAWN	Repo	rt Date: 4/24/2009	Area: 8.0	
	Result	Desired Result	Deficit- Sufficiency	Deficit-Sufficiency lbs/1000 sq ft	Graphical Result	
Exchange Capacity	12.17					
Water pH (1:1)	6.2	6.	5 -0.3		Very Low Low Desired I	Exce
Organic Matter (%)	5.01	6.0	0 -0.99		1	Exc
Soluble Sulfur (ppm)	13	37.	5 -24.5	-1.13		Exc
Easily Extractable P as P2O5 (lbs/ac)	73.0	200.0	0 -127	-2.92	<u> </u>	Exc
Bray II P as P2O5 (lbs/ac)	234	400.0	-166	-3.82	1	Exc
Calcium (lbs/ac)	3064	3310.0	-246	-5.66	<u> </u>	Exc
Magnesium (lbs/ac)	478	380.0	0 +98	2.25	1	Exc
Potassium (lbs/ac)	192.0	380.0	0 -188	-4.32	l	. 1
Sodium (lbs/ac)	84	56.0	0 +28	+0.64		Exc
Base Saturation	Elemen	t Desire	ed Result		Good Ok Alert F Element Actual Result	Prob
Desired	■Calci	um% 6	8.0 Ac	tual	■Calcium% 62.9	
Desired	EM agn	esium% 1	3.0	luui	■Magnesium% 16.4	
	BPota	sium%	4.0		■Potassium% 2.0	
	■Sodit	m% <	1.0		■Sodium% 1.5	
	□Hydro		0.0		■Hydrogen% 12.0	
	DOther	%	3.0		DOther% 5.2	
Minor Elements Boron (ppm)	0.72	1.5	5 -0.78	-0.04		1
Boron (ppm)	0.72	1.0	-0.78	-0.04	Very Low Desired I	Exce
Iron (ppm)	270	225.0	0 +45	2.07	Very Low Low Desired 8	. I
Manganese (ppm)	17	112.	-95.5	-4.39	Very Low Low Desired I	. I
Copper (ppm)	3.09	3.5	5 -0.41	-0.02	1	. I
Zinc (ppm)	2.40	8.0	-5.6	-0.26		. I
Aluminum (ppm)	685	600.0	+85	3.91		. I

SOIL TEST RESULTS			RATING								
SOILTE	SI KESULIS	,	Very low	Low	Medium	High	Very high	Excess			
plis	5.1	no made			- 111111						
Phosphorus (P)	23	lbs/a	*******	******							
Potassium (K)	199	Ibs/a	********	**************							
Calcium (Ca)	2729	lbs/a	*********	****							
Magnesium (Mg)	626	lbs/a	*********	*******	*********	****					
Organic Matter:	2.3 %		Neur. Acidir	y: 2.5	meq	$\overline{}$	CEC: 11.9	meq			

F - (216) 641-9805

Fertilizer & Limestone Recommendations (lbs/1000 sq ft)

Crop	Nitrogen (N):	Phosphorus(P2O3)	Potash (K2O)	Zinc(Zn)	Sulfur(S)	LIME
1 vegetables	0.5	2.5	0.5			50
4 fescue,blue,ryegrass(avg)	2.0	1.0	0.5			50
O necessial hadding about	0.5	25	10			50

0 - (216) 641-9800

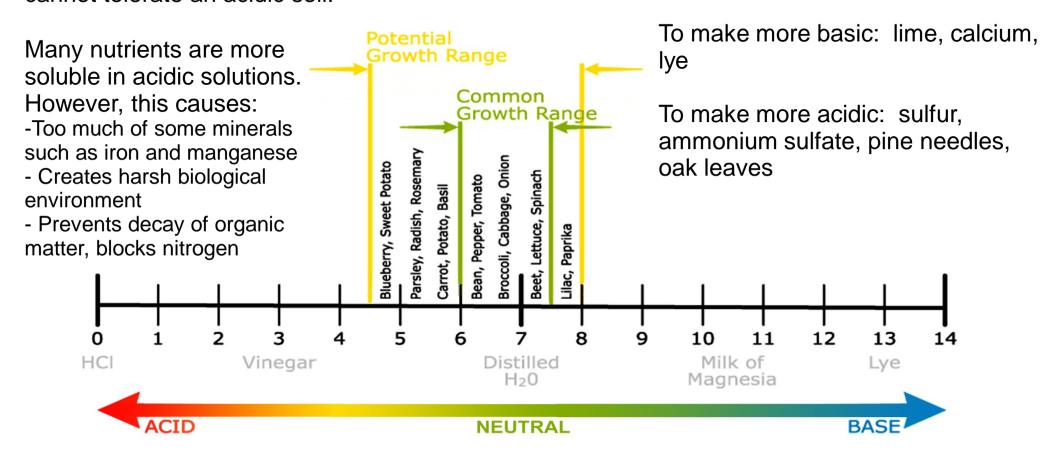
C - (216) 570-5346

Comments: --- Some herbicide labels list restrictions based on soil pH in water. Use the estimated pH in water of 5.6 as a guide to the label. If you wish to have soil pH in water analyzed, contact your dealer or local Extension specialist listed below.

-The soil should be tested every 2 to 3 years to determine the effects of your fertilization practices and to develop a new set of fertilizer and limestone guidelines.

***The soil needs additional organic matter for gardens and crops other than lawns. See MU Publication G6950, "Steps in Fertilizing Garden Soil" and G6956, "Making and Using Compost".

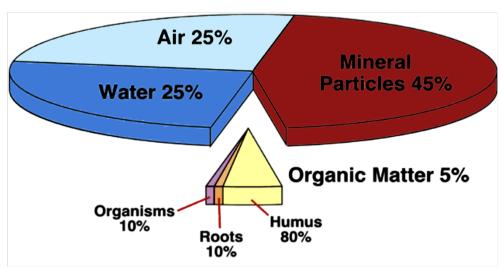
***For average maintenance of fescue, blue, ryegrass apply one pound of nitrogen per 1000 square feet in early September and again in early November or April-May. If available use a fertilizer containing about 1/2 of the nitrogen in stow release form. See MU Publication G6705, "Cool-Season Grasses, Lawn Maintenance Calendar".


***Do not apply sulfur to established lawns as sufficient amounts cannot be applied to lower pil without the possibility of leaf burn.

ı							Ma
	Soil pH	Buffer pH	Cation Exchange Capacity			0	On rop
1	8.6			1		4	0

The lab test will identify pH

The pH level determines the availability of minerals in the soil. High acid (low number) pH makes more minerals available; however, most plants cannot tolerate an acidic soil.



pH Scale

Here, we can look more closely for:

Above: An ideal soil is approximately these proportions.

Right: To optimize the soil, think about the elements in each triangle.

Discuss.

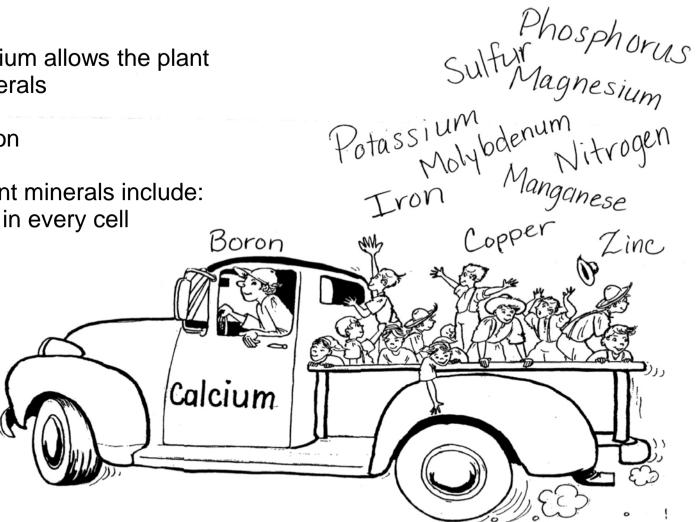
Soil Minerals: Calcium Magnesium Phosphate Sulphur

Soil Structure: Tillage Oxygen Water Humus

Soil Biology: Manure Compost Green Manure

Here is a fun way to think of minerals

If the minerals want to go to town, they need:


A Truck: Calcium allows the plant

to uptake minerals

A Driver: Boron

Other important minerals include:

Manganese - in every cell

Cation Exchange Capacity

CEC?
The soils capcity to absorb certain important nutrients.
Higher the score the better.

Cation Exchange Capacity (CEC) is influenced by:

Soil pH: basic soils can increase CEC score

Humus: increases CEC score

Let's do an analysis on an actual soil test.

lb/A

BROOKSIDE LABORATORIES, INC.

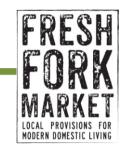
70096-1

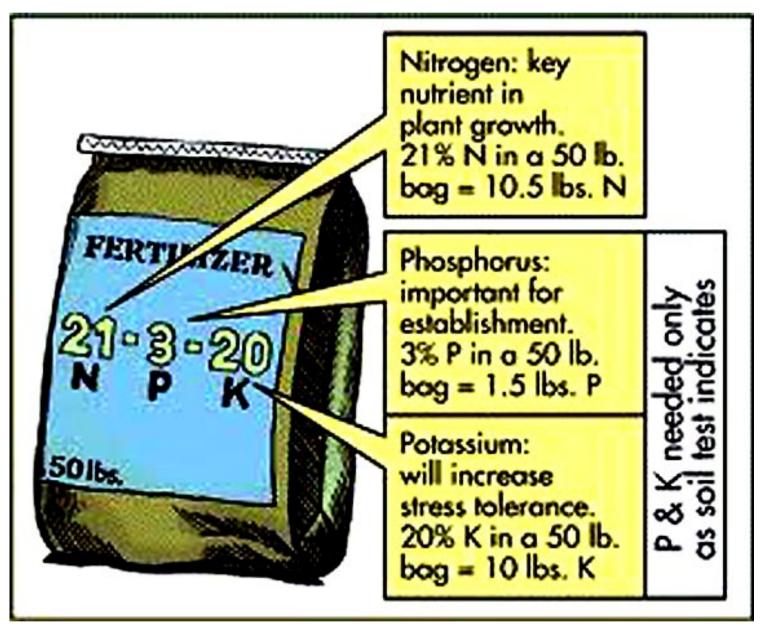
SOIL AUDIT AND INVENTORY REPORT

Name_	Jacob J. Yoder	Acco	unt <u>Green</u>	Field Farm	ns	
Addres	76382 Peoli Road Port W	ashington,	OH 43837		Date04	4/17/2013
Sample	e Location ORGANIC	1	2			
Sample	e Identification	PRODUCE	PRODUCE			
Lab Nu	ımber	0646-1	0647-1			
Total E	exchange Capacity (ME/100 g)	6.48	13.71			
pН	Buffer (SMP/Sikora)	a NA	7.3			
P	н,о (1:1)	7.5	6.9			
Organi	ic Matter (humus) %	3.09	3.78			
Estima	ted Nitrogen Release Ib/A	81	88			
	SOLUBLE SULFUR* ppm	8	10			
2	MEHLICH III Ib/A Pas P₂O₂	69	87			
ANIONS	MEHLICH III III III III PAS P ₂ O ₅ ppm of P BRAY II III III III III PAS P ₂ O ₅ ppm of P OLSEN III III III III PAS P ₂ O ₅ ppm of P ppm of P ppm of P	15	19			
Ē	요 BRAY II Ib/A Pas P ₂ O ₅					
⋖	OLSEN Ib/A Pas P ₂ O ₅					
	ppm of P					
ш	CALCIUM* Ib/A	1758	3752			
ద్ద	ppm	879	1876			
E E	MAGNESIUM* <u>Ib/A</u>			- — — +		<u> </u>
185	POTASSIUM* Ib/A	48	186			
EXCHANGEABL CATIONS	ppm	$-\frac{10}{24}$	93	+		<u> </u>
150	SODIUM* Ib/A	34	68			
û	ppm	17	34			
	E	ASE SATURAT	ION PERCENT			
	Calcium %	67.82	68.42			
	Magnesium %	26.23	22.73			
	Potassium %	0.95	1.74			
	Sodium % Other Bases %	1.14	1.08			
	Hydrogen %	3.90	4.50			
	Tryarogan 70	0.00	1.50			
		EXTRACTABL		П		
	Boron* (ppm)	0.36	0.64			
	Iron* (ppm)	68	118			
	Manganese* (ppm) Copper* (ppm)	114 0.97	179 5.74			
	Zinc* (ppm)	1.51	4.23			
	Aluminum* (ppm)	513	636			
OTHER TESTS	Soluble Salts (mmhos/cm)					
TES	Chlorides (ppm)					
0.						

Courtesy of Greenfield Family Farms

To test your soil, see their stand here today. Soil tests are available.


Items of note:


Organic Matter – how can we build humus?

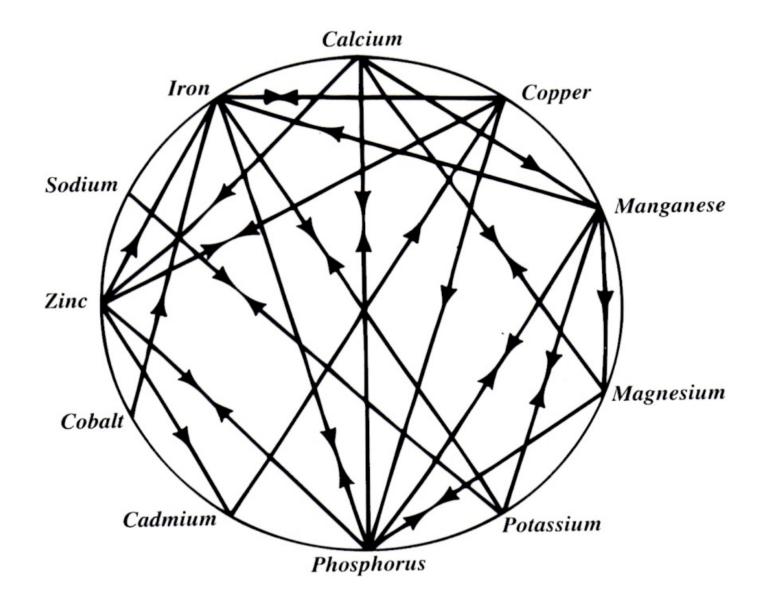
Cations (minerals) – how can we adjust these?

(see next slide for discussion about commercial fertilizer options)

Here is how to read a commercial fertilizer

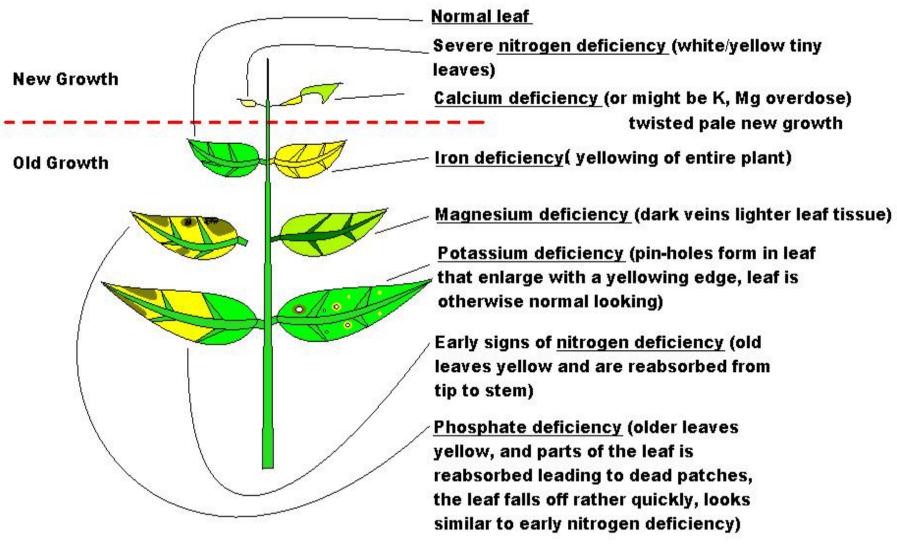
Important Notes:

Salts: increase acidity, dehydrate plants


Lots of commercial fertilizers are salt based (sulfate, salt of sulfuric acid)

Potash – a salt containing potassium

Phosphorus – extracted from phosphate rock with either phosphoric acid or ammonium (ammonium phosphate)


This chart indicates interrelations of nutrients

Looking at your garden: Understanding nutrients

A More In-Depth Chart of Nutrient Deficiency

Symptoms			100 1	Su	spect	ed El	Over	MARKE				
	N	P	K	Mg	Fe	Cu	Zn	В	Мо	Mn	Fertilization	LOCAL PROVISIONS F MODERN DOMESTIC LIVI
Yellowing of Younger leaves												
Yellowing of Middle leaves												
Yellowing of Older leaves												
Yellowing Between veins												
Old leaves drop												
Leaf Curl Over												
Leaf Curl Under									8			
Leaf tips burn, Younger leaves											Гюю	onto
Hollow Heart/Core											Elem	enis
Young leaves wrinkle and curl											N	l'ann ann an
Dead areas in the leaves												litrogen
Leaf growth stunted					× ×						1	hosphorus
Dark green/purplish leaves and stems												otassium
Pale green leaf color										Ý		Magnesium
Leaf Spotting											Fe –	
Spindly												Copper
Soft stems					8 8				8		Zn –	_
Hard/brittle stems											B – B	oron
Growing tips die											Mo –	Molybdenum
Stunted root growth								2			Mn –	Manganese
Wilting												•

Part II: Improving Soils and Your Garden

Improving Soils

Building Available Nutrients -

Biological Stimulants/Enzymes

Compost – basic components, municipal/yard compost vs farm compost

Commercial Fertilizers (discussion about salts) and how to add nutrients organic

Drainage – Tilling Techniques and Raised Bed Gardens

Techniques for Your Garden

Raised Bed Gardens, Hugelculture, Straw Bale Gardens

Additional Resources

Compost: Biological Activity and Nutrients

Compost is aerobic process, it requires:

Carbon (browns) – dead leaves, wood, cardboard, etc

Nitrogen (greens) – fresh grass clippings, fresh manure

Air and Water – stimulates decomposition

Look for a ratio of about 75% browns and 25% greens.

40% moisture suggested. "Feeds" the microorganisms. Too much moisture creates "anaerobic" environment and blocks oxygen.

Temp should be between 90 and 140 F

Other Organics

Organic Soil Amendments

Compost

Shredded tree bark

Sphagnum peat moss

Manure (cow/sheep/horse rabbit/chicken)

Leafmold

Wood ash

Other Organics

Tilling: When and How Far

Tilling: act of loosening the soil mechanically with shovel, rake, or machine

Good: introduces air to soil, proper techniques promote good drainage

Bad: Can disturb microbial activity, create soil compaction (from plow)

Suggestions:

Minimal Till – as light as necessary, need to create a seed bed

Loosen the soil, don't turn it.

4 inches is a safe distance.

Use a shovel and rake.

Other Garden Techniques

Straw Bale Gardening:

- 1) Use straw, not hay. Turn on side.
- 2) "Condition" bale. Sit out over winter, cover top with topsoil or compost.
- 3) Punch holes in straw with hand or tools. Add compost.
- 4) Plant in holes. Water regularly

The straw essentially creates an internal compost bin. It is great for root structure.

Raised Bed Gardens.

- 1) Built above existing soil or surface.
- 2) Creates loose, well drained soil.
- Allows you to create the perfect soil using purchased top soil and compost.

Question and Answer

Today's Presentations and Additional Resources at

www.freshforkmarket.com